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Abstract

A method is presented for solution in momentum space of the bound state problem
with linear potential in r-space. The potential is unbounded at large r leading to a singu-
larity at small g. The singularity is integrable, when regulated by exponentially screening
the r—space potential, and is removed by a subtraction technique. The limit of zero screen-
ing is taken analytically, and numerical solution of the subtracted integral equation gives
eigenvalues and wavefunctions in good agreement with position space calculations. The

method generalises easily to arbitrary power law potentials.



Lattice gauge calculations' for static (heavy) quarks support the notion that the
interquark potential in QCD behaves as V(r) ~ Ar for large r. Indeed, the linear potential
has long been used in phenomenological non-relativistic quark models of baryons and
mesons>>. Meson spectroscopy in particular is successfully described by a linear potential
at large r, modified by spin and colour dependent Coulomb forces at small r. Most
calculations with the linear potential are carried out in coordinate space. This is the
simplest procedure for heavy quark systems, which can perhaps be considered as non-
relativistic; however for light quark systems it would be desirable to have a relativistic
treatment. Bound state equations in relativistic systems* are generally much easier to
solve in momentum space, and thus we are led to consider, as a starting point for the
relativistic case, the Lippmﬁn—Schwinger equation for two scalar particles interacting by
" a linear potential. The methods developed will generalise relatively straightforwardly to
relativistic treatments.

To summarise: here, we treat the Lippmann-Schwinger equation for a linear r-space
potential. The method is for the most part straightforward, the only difficulty arising from
the singularity of the kernel at the origin of momentum space. So far as we are aware,
previous studies of the linear potential in momentum space® have been approximate, in

the sense that the singularity was handled by screening the r space potential:
Vir) ~ Are™". (1)

What has perhaps not been generally appreciated is that the limit n — 0 can be taken
analytically. To the best of our knowledge, previous treatments keep the parameter 5
finite, leading to some uncertainty as to the nature of the calculated eigenvalues and
wavefunctions. In this connection, recall that the screened linear potential does not strictly
speakihg possess true bound states, instead it has scattering resonances, which for low
energy approximate bound states of the unscreened potential. We will extract the limit
of zero screening analytically, using a subtraction technique. The resulting subtracted
integral equation is relatively easy to handle numerically.

[th

The Lippmann-Schwinger equation for the {*" partial wave is

Eaup)+ [Vilp, )8 048’ = Eou(p) 2)
“
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The limit 7 — 0 now exists, and may be extracted by splitting the region of integration

to isolate the singularity. We write:

/ [QO(y) o (y)] (GolF') = dulpl) = /(;P_“ ¥ /pi:n + /p:n

=4 + B + C
(8)

The limits p + 4n have been chosen so that all three extrema of the kernel lie in the middle
region B. The explicit forms of the Legendre functions are:

Qhly) = — [ e 1 ]
Ty (@ -p)+n* (p'+p) +7?

and
2

n

-1 N 1 ]2
(@ -pP+n*  (p'+p) +n?
It is clear that for p’ # p, as is the case in the integrals A and C, the limit n — 0 is

o(y) =n*(p* +p° +1?) [

innocuous, and may be taken immediately, indeed one has:

o0 , 4
lim[4+C) = P /0 dp [G—z—’l—’f—] (#0(') — do(p) (9)

where P denotes as usual, the Cauchy principal value of the integral, which has been made
well-defined by the subtraction. The term B must be handled with care, however, since
p' = p inside the region of integration. Assuming ¢(p') is analytic in the neighborhood of
p, and making an obvious change of variable we find:

4n

. . -1 1 ' 1"2 n
-t [ o oo ] o

+ 2492 (z+2p

n’((z +p)* +p° +’7)[ s+ 1)2:“72]2[x¢'+f;¢"+...H}

= lim Bl + lim B2 (10)

Scaling out 4n then results in:

;) s + B0 L g1

1 |
. . p(p

= dyl (L
lim Bl = lim | (4n)dy (4n+y> <1+

1
— (24 it N
=(p ¢(p))/_1dy(1+y2)—0~
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(11)

The contribution of the second term in B1 clearly vanishes since it is not singular at p’ = p,

the analysis of B2 is similar, and we conclude that B tends to zero. Therefore the limiting
form of the equation is:

2 o0 2,12

P oulp) = P [ 48 | i (o)~ u(p) = Ebulp) (12

We now discuss the numerical solution of eq(12), which is not yet a completely trivial

matter, since care must be taken to obtain the Cauchy principal value. In this respect

there is a difference between the linear potential and the Coulomb potential, the latter

giving rise to a logarithmic singularity. For the Coulomb potential, the method used in the

literature® is directly to write the Coulomb analog of eq(12), for example using Gaussian

quadrature, as a matrix equation. Since the singularity is only logarithmic this method is

successful for the Coulomb potential. Here, such an approach is not feasible. Instead, we

expand ¢y in a suitable set of basis functions:

N
$0(p) = D Cngalp) (13)

Inserting this expansion in eq(12), multiplying by p’gm(p) and integrating over p, we

obtain:

4 Y 4 2..12
Cn 'p_ m n d - {—;‘,—E—] m n ') — n d 'd
; {/ 2! (P)gn(p)dp + ”/ ek (p)lg (pv) gn(p)]dp'dp

=EYCn [ Fonlplon(pp (14)

which is just the matrix equation: )
Z Amncn =FE Z Gmncn (15)

The double integral over p and p' is performed by changing to variables (p' +p) and (p' —p).
The singularity is in the integral over (p' — p), so this is carried out first using Gaussian
quadrature with an even number of points. This type of integration yields the Cauchy
principal value automatically’. A convenient set of functions g(p) is:

1

gn(p) = TN (16)

5



where N is the maximum number of functions used in the expansion eq(13). Fig(2)is a 3-d
plot of the kernel of eq(14), showing clearly the cancellation which leads to the principal
value. Using the above method we have calculated both eigenvalues and eigenvectors.
In table I the first 12 eigenvalues are listed. We used m; = my; = 1.5 GeV and the
string tension A = 5 (GeV')?. One can see that the lower eigenvalues converge nicely as
the number of functions is increased. We compare to the eigenvalues obtained from a
coordinate space calculation (integrating the equation out from r = 0 and in from large r,
and matching the logarithmic derivatives at the classical turning point), in table (1). The
calculated eigenfunctions also agree with the coordinate space calculation.

In conclusion, we have treated the problem of two non-relativistic, scalar particles
interacting via a linear potential in momentum spa.cc. The relevant Lippmann-Schwinger
‘equation has a singular kernel. We have shown how after regulating the singularity by
exponentially screening the r-space potential, the severity of the singularity can be reduced
by a suitable subtraction, and the limit of zero screening extracted analytically. To the
"best of our knowledge, this point has not been generally understood in the literature.
The limiting form of the equation has been treated numerically, and results are in good
" agreement with more straightforward coordinate space calculations. Relativistic equations
involving linear potentials involve similar singularities, so that the methods developed
here will be applicable. We intend to study the relativistic quark-antiquark problem in the
future. The method presented here can be generalised to arbitrary power law potentials,

and to higher partial waves without undue difficulty.

Acknowledgements
We are extremely grateful to Franz Gross for his generous contribution of essential
ideas during all stages of this work. We would also like to thank Warren Buck and JWN
would like to thank Frank Cucinotta and Barry Ganapol for useful conversations. KMM
and JWN would like to thank CEBAF for its hospitality. This work was supported in part
by the Department of Energy through CEBAF (DEK) and by NASA grants NAC-1-1134
(JWN) and NAG-1-477 (KMM).



N =
E,
E,
E,
E,
Es
Es
Eq
'
E,
Eyo
Eyy
E1p

Table 1

Energy eigenvalues in GeV for [ =0, m; = m,

8 .
5.973

10.468
14.389
18.646
23.402
27.206
33.032
44.374

10
5.972
10.444
14.114
17.452
21.125
25.683
31.269
36.224
40.519
51.774

12
5.972
10.443
14.111
17.378
20.397
23.440
27.274
32.113
38.146
45.309
49.940
58.588

14
5.972
10.443
14.104
17.341
20.351
23.281
26.059
29.032
33.051
38.067

44.286 .

51.893

-~1

=1.5 GeV and A =5 (GeV)?

16
5.972
10.443
14.104
17.335
20.294
23.072
25.842
28.789
31.561
34.428

. 38.517
43.615

18
5.972
10.443
14.104
17.335
20.293
23.053
25.648
27.947
30.194
33.340
36.489
37.309

Exact
5.971
10.441
14.101
17.335
20.291
23.046
25.646
28.119
30.488
32.769
34.972
37.109



Figure Captions
Fig. 1
The singularity structure of the kernel is shown for finite n = .075 with fixed p = 2.

Fig. 2
A 3-dimensional figure of the subtracted, regulated integrand; n = .075. The cancellation

which produces the Cauchy principle value is evident.
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Integrand in arbitrary units
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